198 research outputs found

    When I Say … Social

    Get PDF

    We hardly knew ye… goodbye, #dermtwitter?

    Get PDF

    Social media in undergraduate medical education: A systematic review

    Get PDF
    Introduction There are over 3.81 billion worldwide active social media (SoMe) users. SoMe are ubiquitous in medical education, with roles across undergraduate programmes, including professionalism, blended learning, well being and mentoring. Previous systematic reviews took place before recent explosions in SoMe popularity and revealed a paucity of high-quality empirical studies assessing its effectiveness in medical education. This review aimed to synthesise evidence regarding SoMe interventions in undergraduate medical education, to identify features associated with positive and negative outcomes. Methods Authors searched 31 key terms through seven databases, in addition to references, citation and hand searching, between 16 June and 16 July 2020. Studies describing SoMe interventions and research on exposure to existing SoMe were included. Title, abstract and full paper screening were undertaken independently by two reviewers. Included papers were assessed for methodological quality using the Medical Education Research Study Quality Instrument (MERSQI) and/or the Standards for Reporting Qualitative Research (SRQR) instrument. Extracted data were synthesised using narrative synthesis. Results 112 studies from 26 countries met inclusion criteria. Methodological quality of included studies had not significantly improved since 2013. Engagement and satisfaction with SoMe platforms in medical education are described. Students felt SoMe flattened hierarchies and improved communication with educators. SoMe use was associated with improvement in objective knowledge assessment scores and self-reported clinical and professional performance, however evidence for long term knowledge retention was limited. SoMe use was occasionally linked to adverse impacts upon mental and physical health. Professionalism was heavily investigated and considered important, though generally negative correlations between SoMe use and medical professionalism may exist. Conclusions Social media is enjoyable for students who may improve short term knowledge retention and can aid communication between learners and educators. However, higher-quality study is required to identify longer-term impact upon knowledge and skills, provide clarification on professionalism standards and protect against harms

    Controlled sulfur-based engineering confers mouldability to phosphorothioate antisense oligonucleotides

    Get PDF
    Phosphorothioates (PS) have proven their effectiveness in the area of therapeutic oligonucleotides with applications spanning from cancer treatment to neurodegenerative disorders. Initially, PS substitution was introduced for the antisense oligonucleotides (PS ASOs) because it confers an increased nuclease resistance meanwhile ameliorates cellular uptake and in-vivo bioavailability. Thus, PS oligonucleotides have been elevated to a fundamental asset in the realm of gene silencing therapeutic methodologies. But, despite their wide use, little is known on the possibly different structural changes PS-substitutions may provoke in DNA·RNA hybrids. Additionally, scarce information and significant controversy exists on the role of phosphorothioate chirality in modulating PS properties. Here, through comprehensive computational investigations and experimental measurements, we shed light on the impact of PS chirality in DNA-based antisense oligonucleotides; how the different phosphorothioate diastereomers impact DNA topology, stability and flexibility to ultimately disclose pro-Sp S and pro-Rp S roles at the catalytic core of DNA Exonuclease and Human Ribonuclease H; two major obstacles in ASOs-based therapies. Altogether, our results provide full-atom and mechanistic insights on the structural aberrations PS-substitutions provoke and explain the origin of nuclease resistance PS-linkages confer to DNA·RNA hybrids; crucial information to improve current ASOs-based therapies.© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research

    Psychometric Validation of the Sensory Experiences Questionnaire

    Get PDF
    We evaluated the psychometric properties of the Sensory Experiences Questionnaire (Version 1; Baranek, David, Poe, Stone, & Watson 2006), a brief caregiver questionnaire for young children with autismand developmental delays used to identify sensory processing patterns in the context of daily activities

    Sequence-Dependent Fluorescence of Cyanine Dyes on Microarrays

    Get PDF
    Cy3 and Cy5 are among the most commonly used oligonucleotide labeling molecules. Studies of nucleic acid structure and dynamics use these dyes, and they are ubiquitous in microarray experiments. They are sensitive to their environment and have higher quantum yield when bound to DNA. The fluorescent intensity of terminal cyanine dyes is also known to be significantly dependent on the base sequence of the oligonucleotide. We have developed a very precise and high-throughput method to evaluate the sequence dependence of oligonucleotide labeling dyes using microarrays and have applied the method to Cy3 and Cy5. We used light-directed in-situ synthesis of terminally-labeled microarrays to determine the fluorescence intensity of each dye on all 1024 possible 5′-labeled 5-mers. Their intensity is sensitive to all five bases. Their fluorescence is higher with 5′ guanines, and adenines in subsequent positions. Cytosine suppresses fluorescence. Intensity falls by half over the range of all 5-mers for Cy3, and two-thirds for Cy5. Labeling with 5′-biotin-streptavidin-Cy3/-Cy5 gives a completely different sequence dependence and greatly reduces fluorescence compared with direct terminal labeling

    Phosphodiesterase 4 Inhibition Reduces Innate Immunity and Improves Isoniazid Clearance of Mycobacterium tuberculosis in the Lungs of Infected Mice

    Get PDF
    Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is one of the leading infectious disease causes of morbidity and mortality worldwide. Though current antibiotic regimens can cure the disease, treatment requires at least six months of drug therapy. One reason for the long duration of therapy is that the currently available TB drugs were selected for their ability to kill replicating organisms and are less effective against subpopulations of non-replicating persistent bacilli. Evidence from in vitro models of Mtb growth and mouse infection studies suggests that host immunity may provide some of the environmental cues that drive Mtb towards non-replicating persistence. We hypothesized that selective modulation of the host immune response to modify the environmental pressure on the bacilli may result in better bacterial clearance during TB treatment. For this proof of principal study, we compared bacillary clearance from the lungs of Mtb-infected mice treated with the anti-TB drug isoniazid (INH) in the presence and absence of an immunomodulatory phosphodiesterase 4 inhibitor (PDE4i), CC-3052. The effects of CC-3052 on host global gene expression, induction of cytokines, and T cell activation in the lungs of infected mice were evaluated. We show that CC-3052 modulates the innate immune response without causing generalized immune suppression. Immune modulation combined with INH treatment improved bacillary clearance and resulted in smaller granulomas and less lung pathology, compared to treatment with INH alone. This novel strategy of combining anti-TB drugs with an immune modulating molecule, if applied appropriately to patients, may shorten the duration of TB treatment and improve clinical outcome
    corecore